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1. Introduction

The Pareto size distribution is one of the most ubiquitous empirical relationships in the

natural and social sciences. It has been used to describe the distributions of, among

other things, incomes, firm sizes, stock returns, and city populations. Because of its

empirical prevalence, but also its mathematical simplicity, the Pareto distribution has

become an extremely important statistical tool for scientists across disciplines. Typi-

cally, the modeling of these statistical processes implies independence of the different

Pareto realizations. However, for a large number of empirical and theoretical applica-

tions, such as natural disasters, stock returns, and firm sales across multiple markets,

realizations could be closely correlated while Pareto size distributions still prevail.1

In this paper we describe a multivariate distribution that explicitly allows for correla-

tion across different draws and exhibits Pareto marginals. In addition, the maximum is

distributed Pareto, and conditional distributions have a convenient form. In particular,

we show that the function

H(z) = 1−

(
n∑
i=1

(
Tiz
−θ
i

)1/(1−ρ)

)1−ρ

(1)

with support

zi ≥ T̃ 1/θ for all i, where

T̃ ≡

(
n∑
i=1

T
1/(1−ρ)
i

)1−ρ

, Ti > 0 for all i,

θ > 0 and ρ ∈ [0, 1), is a joint cumulative distribution function for the vector of ran-

dom variables (Z1, . . . , Zn), where H(z) = H(z1, . . . , zn) = P(Z1 ≤ z1, . . . , Zn ≤ zn).2 We

also show that this distribution has marginals that have Pareto tails, and that max Z is

distributed Pareto. The different parameters of the distribution have natural interpre-

tations: the parameter θ determines the heterogeneity across realizations of different

vectors, while ρ determines the heterogeneity of the realizations of a single vector.

Various multivariate Pareto distributions have been developed since the introduc-

1See Jupp and Mardia (1982) on incomes across different years, Chiragiev and Landsman (2007) on
risk capital allocations, and Arkolakis et al. (2013) on multinational firms’ sales to one destination from
many possible production locations.

2The distribution (1) has finite mean if θ > 1 and finite variance if θ > 2.



2 ARKOLAKIS-RODRı́GUEZ-CLARE-SU

tion of multivariate Pareto distributions of the first and the second kind by Mardia (1962).

Many of these examples and generalizations can be found in Arnold (1990), Arnold et al.

(1992), and Kotz et al. (2002). Our distribution generalizes the bivariate distribution pre-

sented in Nelsen (2007) by combining an Archimedean copula that is not strict with the

Pareto distribution of the first type.

To understand the properties of this distribution and the difference with past known

examples we first study a known bivariate example. Consider the joint cumulative dis-

tribution

G(z1, z2) = 1−
[
(T1z

−θ
1 )1/(1−ρ) + (T2z

−θ
2 )1/(1−ρ)

]1−ρ
,

with support implicitly defined by (z1, z2) such that (T1z
−θ
1 )1/(1−ρ) + (T2z

−θ
2 )1/(1−ρ) ≤ 1.

This distribution can be seen as resulting from the Archimedean copula

C(u1, u2) ≡ max

{
0, 1−

[
(1− u1)1/(1−ρ) + (1− u2)1/(1−ρ)

]1−ρ
}
,

where G(z1, z2) = C(F1(z1), F2(z2)) and where Zi is distributed Pareto with Fi(zi) =

P(Zi ≤ zi) = 1− Tiz−θi for i = 1, 2.3

In order to better understand the role of ρ in this bivariate example, we can study the

upper tail dependence (λU ) of the copula. Roughly speaking, λU gives the probability

that Z1 is large given that Z2 is large , and vice versa. Formally, this is found by taking the

limit of the conditional probability P(F1(Z1) > u | F2(Z2) > u),

λU ≡ lim
u↑1

P(F1(Z1) > u | F2(Z2) > u) = lim
u↑1

1− 2u+ C(u, u)

1− u
= 2− 21−ρ.

As ρ→ 0, λU → 0, so that if Z2 is large then Z1 is large with probability 0, while as ρ→ 1,

λU → 1, so that if Z2 is large then Z1 will also be large with probability 1.

The distribution G(z1, z2) has the property that Z ≡ max(Z1, Z2) is distributed Pareto

with the cumulative distribution F (z) = 1 − T̃ z−θ with support z ≥ T̃ 1/θ. Moreover, the

joint probability that j = arg maxi Zi and that Zj ≥ z is simply

Pr
(

arg max
i
Zi = j ∩max

i
Zi ≥ z

)
=
T

1/(1−ρ)
j

T̃ 1/(1−ρ)
T̃ z−θ. (2)

3This is copula 4.2.2 in Nelsen (2007).
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This is a convenient property for many economic applications. For example, as explored

in Arkolakis et al. (2013), multinational firms can produce a good in many locations and

will choose the location with higher productivity (controlling for other determinants of

cost). If productivity in location i is zi and ifG(z1, z2, ..., zn) is the distribution of produc-

tivity across locations, then we may need Z ≡ max(Z1, ..., Zn) to be distributed Pareto

so that sales across firms in a market is approximately Pareto, which is what we tend to

observe in the data (at least in the right tail). In addition, having property (2) proves very

convenient for analytical tractability.

Unfortunately, extending the distribution G(z1, z2) to three or more variables cannot

be done since the copula C(u1, u2) is not strict (see Nelsen, 2007). Thus, the function

H(z) = 1−

(
n∑
i=1

(
Tiz
−θ
i

)1/(1−ρ)

)1−ρ

with domain defined implicitly by
∑n

i=1

(
Tiz
−θ
i

)1/(1−ρ) ≤ 1 is not a distribution for n ≥ 3.

Moreover, to the best of our knowledge, there are no other multivariate distributions

for n > 2 that have Pareto tails and Pareto distributed maximum.4 In this paper we

show that we can modify the support of the distribution to make it anN-box defined by

zi ≥ T̃ 1/θ for all i, where T̃ ≡
(∑n

i=1 T
1/(1−ρ)
i

)1−ρ
, as in the distribution introduced in (1).

In the next section we discuss the properties of this distribution, while in Section 3 we

prove that H(z) is a proper distribution.

2. Properties of the General Distribution

Below we state some important properties of the distribution in (1). All the proofs can

be found in the Appendix.

i. The maximum is distributed Pareto. Z ≡ max(Z1, ..., Zn) is distributed Pareto of

type I (Arnold, 2015) with shape parameter θ and scale parameter T̃ 1/θ – that is,

P(Z ≤ z) = 1− T̃ z−θ.

4We have evaluated the multivariate Pareto distributions in Mardia (1962), Arnold, Hanagal (1996), Li
(2006), Asimit et al. (2010), Su and Furman (2016), as well as the copulas in Table 4.1 on page 116 in Nelsen
(2007). In none of these cases the maximum is distributed Pareto.
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ii. Conditional Probabilities. The joint probability that arg maxi Zi = j and Zj ≥ z

for z > T̃ 1/θ has the following convenient form:

Pr
(

arg max
i
Zi = j ∩max

i
Zi ≥ z

)
=
T

1/(1−ρ)
j

T̃ 1/(1−ρ)
T̃ z−θ.

Combined with property (i), this implies that

Pr
(

arg max
i
Zi = j|max

i
Zi ≥ z

)
=
T

1/(1−ρ)
j

T̃ 1/(1−ρ)
.

iii. Marginal distributions. To study marginal distributions we need some additional

notation. Let Nn ≡ {1, 2, . . . , n}, let ξ be some nonempty proper subset of Nn, and

let m(ξ) be the cardinality of set ξ. For m(ξ) < n the lower-dimension marginals

are

H(z; ξ) = 1−

(∑
i∈ξ

(
Tiz
−θ
i

)1/(1−ρ)

)1−ρ

with support zi ≥ T̃ 1/θ for i ∈ ξ. For the special case in which m(ξ) = 1, so ξ = {i}
for some i ∈ Nn, then H(z; ξ) = Fi(zi) = 1− Tiz−θi .

iv. Discontinuities at the boundary. The lower-dimension marginals H(z; ξ) (with

m(ξ) < n) are discontinuous at any point z with zi = T̃ 1/θ for i ∈ ξ. Focusing again

on the special case with ξ = {i} for some i ∈ Nn, then the discontinuity at z with

zi = T̃ 1/θ can be seen by noting that Fi(T̃ 1/θ) = 1− Ti/T̃ > 0 while Fi(T̃ 1/θ − ε) = 0

for any positive ε. The distribution H(·) is also discontinuous at any point z in

which zi = T̃ 1/θ for some i except if zi = T̃ 1/θ for all i – that is, H(·) is continuous in

(T̃ 1/θ,∞]n ∪ z∗ where z∗ ≡ (T̃ 1/θ, · · · , T̃ 1/θ).

v. Pareto tails. The conditional marginal distribution for zi ≥ a > T̃ 1/θ is Pareto of

type I (Arnold, 2015),

P(Zi ≥ zi | Zi ≥ a) =
(zi
a

)−θ
.

We interpret this result to mean that the distribution H(·) has Pareto tails. Of

course, the same property holds in the Archimedian copula of Section 1.
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vi. The role of ρ. The upper tail dependence parameter between Zi and Zj is

λU ≡ lim
u↑1

P(Fi(Zi) > u | Fj(Zj) > u) = 2− 2(1−ρ),

which is the same as that of the Archimedian copula in Section 1. Note also that, as

in the bivariate distribution in Section 1, as ρ→ 1, we haveH(z)→ min{F1(z1), . . . , Fn(zn)},
where Fi(·) is the one dimensional marginal for each i. This implies that as ρ → 1

our distributionH(z) converges to the Frechet-Hoeffding upper bound copula and

in this case Zi’s are not only comonotonic (Dhaene et al., 2002) but also pairwise

perfectly correlated. On the other hand, if ρ = 0, then the proposed distribution

H(·) is singular; concretely, the density is zero (i.e., h(z) = 0) almost everywhere

on Rn
and the distribution is concentrated on the set

⋃n
i=1{(z1, . . . , zn) : zi ≥ zj =

T̃ 1/θ for all j 6= i}, which is of Lebesgue measure zero. Note that with ρ = 0 we can

write

H(z) =
n∑
i=1

(Ti/T̃ )(1− T̃ z−θi ),

with T̃ =
∑n

j=1 Tj . This is equivalent to choosing i with probability Ti/T̃ and then

having Zj = T̃ 1/θ for all j 6= i and Zi distributed according to P(Zi ≤ zi) = 1− T̃ z−θi .

vii. Stochastic dominance with respect to T . If T ′i ≥ Ti for all i then HT ′ (z) stochasti-

cally dominates HT (z): HT ′ (z) ≤ HT (z).

viii. Stochastic dominance with respect to θ. Let θ′ ≥ θ and T̃ 1/θ ≥ 1; then Hθ′ (z)

stochastically dominates Hθ (z): Hθ′ (z) ≥ Hθ (z).

3. A Multivariate Pareto Distribution

To simplify the exposition, we assume that T̃ = 1 . This is without loss of generality,

since we can apply the simple transformation Zi → T̃ (−1/θ)Zi for each i to get this form.

Then, defining the distribution on Rn
, we have

H(z) =

1−
[∑n

i=1(Tiz
−θ
i )(1/(1−ρ))

]1−ρ
if z ∈ [1,∞] n;

0 if zi < 1 for some i.
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In the rest of this note we show that H(·) is indeed a distribution function. To do so, we

need to show thatH(·) satisfies the following two conditions (see Nelsen (2007) page 46).

Condition 1 (Lower and upper limits)

limz→+∞H(z) = 1 and H(z) = 0 for all z ∈ Rn
such that zi = −∞ for at least one i.

Condition 2 (n-increasing)

H(·) is n-increasing. Formally, for any two vectors a,b ∈ Rn
with a ≤ b and

B ≡ [a,b]= [a1, b1] × ... × [an, bn] the n-box formed by the vectors a and b, H is

n-increasing if and only if

VH (B) ≡
∑

c∈Θ(B)

sgn (c)H (c) ≥ 0,

where Θ(B) is the set of vertices of B and sgn (c) is given by

sgn (c) =

1 if ck = ak for an even number of k’s

−1 if ck = ak for an odd number of k’s
.

Condition 1 holds because limz→∞H(z) = 1 follows directly from limzi→∞ z
−θ/(1−ρ)
i =

0 for all i and H(z) = 0 for z /∈ [1,∞]n. Indeed, we have H(z) ∈ [0, 1] for all z∈ Rn
.

Since
[∑n

i=1(Tiz
−θ
i )1/(1−ρ)

]1−ρ ≥ 0 then H(z) ≤ 1, and since H(z) is increasing in each

zi (for z ∈ [1,∞] n) then to show that H(z) is non-negative it is sufficient to note that

H(1, 1, ..., 1) = 0.

The challenge in proving that H(·) is a proper distribution lies in showing that Con-

dition 2 holds. It is of course easy to establish that Condition 2 holds if ∂nH(z)
∂z1∂z2...∂zn

exists

at the entire support of the distribution. But as we explained in the previous section,

the function is discontinuous at the boundary of the support, and hence this derivative

does not exist there. This observation shows that the n-increasing property is not obvi-

ous because of discontinuity at the boundary of the support; instead, it does not depend

on any specific Paretian structure of H(·).

With this observation, we consider a generic function G(·) with discontinuity at the

boundary of the support [1,∞]n and first establish a general theorem, which shows that

if the functionG(·) has a discrete component along a square, and is smooth everywhere

else, then it is n-increasing. We then check conditions of Theorem 1 to show H(·) is
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n-increasing.

3.1. Main Result

We introduce some additional definitions. Let Nn ≡ {1, 2, . . . , n} and consider an n-Box

B. Let A(c;B) ≡ {k|ck = ak} and m(S) the cardinality of the set S, then we can write

VG (B) =
∑

c∈Θ(B)

(−1)m(A(c;B))G (c) .

For future reference, we refer to VG(B) as the G-volume of the box B. For any proper

subset ξ ⊂ Nn, let l(ξ) = n − m(ξ). Let x∈ Rn
, let x(ξ) be the vector in Rl(ξ)

defined by

taking out from x all the elements i ∈ ξ, and let x̄(ξ) be the vector in Rn
with i-th element

equal to one if i ∈ ξ and xi otherwise. Let Gξ be a mapping from Rl(ξ)
to [0, 1] defined

as Gξ : x(ξ) 7→ G(x̄(ξ)). Finally, define φ to be the empty set.5 Loosely speaking, we can

think of VGξ([a(ξ),b(ξ)]) as the G-volume of [a,b] in l(ξ) dimensions.6

To prove thatG(·) is n-increasing, we split any n-boxB into sub-boxes, each of which

is either all outside or all inside the box [1,∞]n, but never crossing the 1-axis. We show

that the G-volume of the box B is the sum of the Gξ-volume of these sub-boxes and

that each Gξ-volume is non-negative. Before we prove the main result below, let us first

illustrate the split of a 2-box.

Figure 1 shows two possible 2-boxes. In Panel A, we consider a 2-box B ≡ [a1, b1] ×
[a2, b2] with a1 < 1 < b1 and 1 < a2 < b2. Setting a∗ = (1, a2), we can decompose the

G-volume of the box B as follows:

VG(B) = G(b1, b2)−G(b1, a2)−G(a1, b2) +G(a1, a2)

= [G(b1, b2)−G(b1, a2)−G(1, b2) +G(1, a2)] + [G(1, b2)−G(1, a2)]

= VG([a∗,b]) + VG{1}([a
∗({1}),b({1})]).

Similarly, in Panel B, we consider a 2-box B ≡ [a1, b1] × [a2, b2] with a1 < 1 < b1 and

a2 < 1 < b2 and let a∗ = (1, 1) . The G-volume of this box can similarly be decomposed

5For example, for n = 2 and ξ = {1}, we have x(ξ) = x2, x̄(ξ) = (1, x2) and Gξ(x2) = G(1, x2). If ξ = φ
the empty set, we have x(ξ) = x̄(ξ) = x and Gξ = Gφ = G.

6In the example above with n = 2 and ξ = {1}, VGξ
([a(ξ),b(ξ)]) = G(1, b2)−G(1, a2).
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Panel A

x1 = 1

x2 = 1

(a1, a2)

(a1, b2)

(b1, a2)

(b1, b2)

(1, a2)

(1, b2)

Panel B

x1 = 1

x2 = 1

(a1, a2)

(a1, b2)

(b1, a2)

(b1, b2)

(1, a2)

(1, b2)

(b1, 1)(1, 1)(a1, 1)

Figure 1: Decomposition of the G-volume of a 2-box

as follows:

VG(B) = VG([a∗,b]) + VG{1}([a
∗({1}),b({1})]) + VG{2}([a

∗({2}),b({2})]).

Note that we don’t need to add the box corresponding to ξ = {1, 2} = N2 since this

box obviously has zero volume. As proved in Theorem 1 below, the decomposition of

a general n-box is valid and each Gξ volume is non-negative as long as its density gξ is

non-negative on (1,∞]l(ξ). It is thus obvious that the function G(·) n-increasing.

Theorem 1. Suppose a function G : Rn → R satisfies (i) G(z) = 0 for z /∈ [1,∞]n, (ii)

g(z) = ∂nG(z)
∂z1∂z2...∂zn

≥ 0 on (1,∞]n, and (iii) gξ(·) =
∂Gξ(·)
∂x(ξ)

≥ 0 on (1,∞]l(ξ) for each nonempty

ξ 6= Nn. Then G(·) is n-increasing.

Proof. Consider an arbitrary n-box B ≡ [a,b], where a,b ∈ Rn
, with a ≤ b.

Case 1 bi < 1 for some i.

Then B lies entirely in the region where G(z) = 0, so VG (B) = 0.

Case 2 a ≥ (1, . . . , 1).

Then B lies in the region where g(z) = ∂nG(z)
∂z1∂z2...∂zn

≥ 0 almost everywhere so we can
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apply the fundamental theorem of calculus to show that

VG (B) =

∫
B

g(z) dz1 dz2 · · · dzn,

which is clearly non-negative.

Case 3 b ≥ (1, . . . , 1) and ai < 1 for at least one i.

This implies that the set Ω ≡ {k ∈ Nn|ak < 1} is nonempty. To prove that the G-

volume of B is non-negative, we first show that it can be expressed as the sum of

the volume of sub-boxes that do not cross the 1-axis. That is, we show that

VG(B) = VG([a∗,b]) +
∑

ξ⊆Ω,ξ 6=φ,Nn

VGξ([a
∗(ξ),b(ξ)]). (3)

where a∗ ≡ ā(Ω). By case 2, we have thatVG([a∗,b]) ≥ 0. In addition, VGξ([a
∗(ξ),b(ξ)])

is non-negative for all ξ ⊆ Ω, ξ 6= φ,Nn because for each ξ 6= Nn, the density gξ of

Gξ on (1,∞]l(ξ) is well defined and non-negative for all x(ξ) on (1,∞]l(ξ), so

VGξ([a
∗(ξ),b(ξ)]) =

∫
[a∗(ξ),b(ξ)]

gξ(x(ξ)) dx(ξ) ≥ 0.

Thus it suffices to show that Equation (3) holds. The challenge here is that, by

definition,

VGξ ([a∗(ξ),b(ξ)]) =
∑

d∈Θ([a∗(ξ),b(ξ)])

(−1)m(A(d;[a∗(ξ),b(ξ)]))Gξ(d), (4)

with d ∈ Rl(ξ)
whereas VG(B) is defined as a sum of G(c) across vertices c ∈ Rn

.

To proceed, let Γ ≡ {c ∈ Rn|ck ∈ {ak, a∗k, bk} for all k ∈ Nn} be the collection of all

vertices after the decomposition of B into sub-boxes and let Ψ ≡ Γ\Θ(B) be the

set of “new” vertices generated by that decomposition. For any nonempty ξ ⊆ Ω

that is not equal to Nn, let Ψξ ⊆ Ψ be defined by Ψξ ≡ {c ∈ Ψ|ck = a∗k for all k ∈ ξ},
let Bξ ≡ [ā(Ω\ξ), b̄(ξ)] be the n-dimensional sub-box. Figure 2 shows two cases for

the decomposition of a 2-box.

Equation (4) combined with the fact that Gξ(c(ξ)) = G(c̄(ξ)) and the fact that that
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Panel A

x1 = 1

x2 = 1

(a1, a2)

(a1, b2)

(b1, a2)

(b1, b2)

(1, a2)

(1, b2)

Split
=⇒

Sub-boxes

B{1}

(a1, b2)

(a1, a2) (1, a2)

(1, b2)

(1, a2)

(1, b2)

(b1, a2)

(b1, b2)

Panel B

x1 = 1

x2 = 1

(a1, a2)

(a1, b2)

(b1, a2)

(b1, b2)

(1, a2)

(1, b2)

(b1, 1)(1, 1)(a1, 1)

Split
=⇒

Sub-boxes

B{1}

(a1, b2)

(a1, 1) (1, 1)

(1, b2)

B{2}

(a1, 1) (1, 1)

(a1, a2) (1, a2)

(1, b2)

(1, 1) (b1, 1)

(b1, b2)

(1, 1) (b1, 1)

(b1, a2)(1, a2)

In Panel A, Ω = {1}, a∗ = (1, a2), Γ = {(a1, a2), (1, a2), (b1, a2), (a1, b2), (1, b2), (b1, a2)}, Ψ = {(1, a2), (1, b2)},
and B{1} = [a1, 1]× [a2, b2];

in Panel B, Ω = {1, 2}, a∗ = (1, 1), Γ = {(a1, a2), (1, a2), (b1, a2), (a1, 1), (1, 1), (b1, 1), (a1, b2), (1, b2), (b1, b2)},
Ψ = {(a1, 1), (1, a2), (1, 1), (1, b2), (b1, 1)}, B{1} = [a1, 1]× [1, b2], and B{2} = [1, b1]× [a2, 1].

Figure 2: Sub-boxes
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d ∈ Θ([a∗(ξ),b(ξ)]) if and only if d = c(ξ) with c ∈ Θ(Bξ) ∩Ψξ implies that

VGξ ([a∗(ξ),b(ξ)]) =
∑

d=c(ξ): c∈Θ(Bξ)∩Ψξ

(−1)m(A(d;[a∗(ξ),b(ξ)]))Gξ(d)

=
∑

c∈Θ(Bξ)∩Ψξ

(−1)m(A(c(ξ);[a∗(ξ),b(ξ)]))G(c̄(ξ)).

Since c̄(ξ) = c for all c ∈ Ψξ and A(c(ξ); [a∗(ξ),b(ξ)]) = {k ∈ Nn \ ξ|ck = a∗k}, we can

then write

VGξ ([a∗(ξ),b(ξ)]) =
∑

c∈Θ(Bξ)∩Ψξ

(−1)m({k∈Nn\ξ|ck=a∗k})G(c).

But note that, for any c ∈ Ψξ we must have

m({k ∈ Nn\ξ|ck = a∗k}) =m({k ∈ Nn|ck = a∗k})−m({k ∈ ξ|ck = a∗k})

=m({k ∈ Ω|ck = a∗k}) +m({k ∈ Nn\Ω|ck = a∗k})−m(ξ).

For any c ∈ Γ, let Ω(c) ≡ {k ∈ Ω|ck = 1} and Ω̃(c) ≡ {k ∈ Nn \ Ω|ck = ak}.
Combining these definitions with the previous equation we can then write

m({k ∈ Nn\ξ|ck = a∗k}) = m(Ω(c))−m(ξ) +m(Ω̃(c))

and hence

VGξ([a
∗(ξ),b(ξ)] =

∑
c∈Θ(Bξ)∩Ψξ

(−1)[m(Ω(c))−m(ξ)+m(Ω̃(c))]G(c).

But if c ∈ Θ(Bξ)\Ψξ then ck = ak < 1 for some k ∈ ξ and G(c) = 0, so we can write

VGξ([a
∗(ξ),b(ξ)] =

∑
c∈Θ(Bξ)

(−1)[m(Ω(c))−m(ξ)+m(Ω̃(c))]G(c),

and noting that Bξ = [ā(Ω\ξ), b̄(ξ)], we then have

VGξ([a
∗(ξ),b(ξ)] =

∑
c∈Θ([ā(Ω\ξ),b̄(ξ)])

(−1)[m(Ω(c))−m(ξ)+m(Ω̃(c))]G(c). (5)
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Note that

VG([a∗,b]) =
∑

c∈Θ([a∗,b])

(−1)m({k|ck=a∗k})G(c)

=
∑

c∈Θ([ā(Ω\φ),b̄(φ)])

(−1)[m(Ω(c))−m(φ)+m(Ω̃(c))]G(c) (6)

because [a∗,b] = [ā(Ω\φ), b̄(φ)] and {k|ck = a∗k} = Ω(c) ∪ Ω̃(c) by definition. Com-

bining equalities (5) and (6), we obtain

VG([a∗,b]) +
∑

ξ⊆Ω,ξ 6=φ,Nn

VGξ([a
∗(ξ),b(ξ)])

=
∑

ξ⊆Ω,ξ 6=Nn

∑
c∈Θ([ā(Ω\ξ),b̄(ξ)])

(−1)[m(Ω(c))−m(ξ)+m(Ω̃(c))]G(c)

=
∑
ξ⊆Ω

∑
c∈Θ([ā(Ω\ξ),b̄(ξ)])

(−1)[m(Ω(c))−m(ξ)+m(Ω̃(c))]G(c)

because if Ω = Nn thenG(c) = 0 for all c ∈ Θ([ā(Ω\Nn), b̄(Nn)]) = Θ([a, a∗]). There-

fore we have

VG([a∗,b]) +
∑

ξ⊆Ω,ξ 6=φ,Nn

VGξ([a
∗(ξ),b(ξ)])

=
∑
ξ⊆Ω

∑
c∈Θ([ā(Ω\ξ),b̄(ξ)])

(−1)[m(Ω(c))−m(ξ)+m(Ω̃(c))]G(c)

=
∑
ξ⊆Ω

∑
c∈Θ([ā(Ω\ξ),b̄(ξ)])\Ψ

(−1)[m(Ω(c))−m(ξ)+m(Ω̃(c))]G(c)

+
∑
ξ⊆Ω

∑
c∈Θ([ā(Ω\ξ),b̄(ξ)])∩Ψ

(−1)[m(Ω(c))−m(ξ)+m(Ω̃(c))]G(c)

≡Term 1 + Term 2.

The rest of the proof consists in showing that (i) Term 1 = VG(B) and that (ii)

Term 2 = 0. To show (i), note first that for all ξ ⊆ Ω and c ∈ Θ([ā(Ω \ ξ), b̄(ξ)]) \ Ψ ,
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we have m(Ω(c)) = 0 by definition of Ψ, and m({k ∈ Ω|ck = ak}) = m(ξ). So,

m(Ω(c))−m(ξ) +m(Ω̃(c))

= −2m(ξ) +m(ξ) +m({k ∈ Nn \Ω|ck = a∗k})

= −2m(ξ) +m({k ∈ Ω|ck = ak}) +m({k ∈ Nn \Ω|ck = ak})

= −2m(ξ) +m({k ∈ Nn|ck = ak})

= −2m(ξ) +m(A(c;[a,b])),

where the second equality holds because a∗k = ak if k /∈ Ω. Given that Θ([a,b]) =

{c ∈ Θ([ā(Ω \ ξ), b̄(ξ)]) \Ψ : ξ ⊆ Ω}we then have

Term 1 =
∑
ξ⊆Ω

∑
c∈Θ([ā(Ω\ξ),b̄(ξ)])\Ψ

(−1)[m(Ω(c))−m(ξ)+m(Ω̃(c))]G(c)

=
∑
ξ⊆Ω

∑
c∈Θ([ā(Ω\ξ),b̄(ξ)])\Ψ

(−1)[−2m(ξ)](−1)[m(A(c;[a,b]))]G(c)

=
∑

c∈Θ([a,b])

(−1)m(A(c;[a,b]))G (c)

= VG (B) .

To show (ii), observe that Ψ = ∪ξ⊆Ω[Θ([ā(Ω\ξ), b̄(ξ)])∩Ψ] and that in fact any vertex

c ∈ Ψ will be repeated
(
m(Ω(c))

v

)
times (although not necessarily with the same sign)

in the set of vertices Θ([ā(Ω \ ξ), b̄(ξ)]) ∩ Ψ across different ξ ⊆ Ω(c) with m(ξ) = v

and hence will repeated
∑m(Ω(c))

v=0

(
m(Ω(c))

v

)
across all possible ξ ⊆ Ω(c). Hence we
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have

Term 2 =
∑
ξ⊆Ω

∑
c∈Θ([ā(Ω\ξ),b̄(ξ)])∩Ψ

(−1)[m(Ω(c))−m(ξ)+m(Ω̃(c))]G(c)

=
∑
c∈Ψ

m(Ω(c))∑
v=0

(
m (Ω(c))

v

)
(−1)m(Ω(c))−v+m(Ω̃(c))

G(c)

=
∑
c∈Ψ

(−1)m(Ω(c))+m(Ω̃(c))
m(Ω(c))∑
v=0

(
m (Ω(c))

v

)
(−1)v

G(c)

=
∑
c∈Ψ

[
(−1)m(Ω(c))+m(Ω̃(c)) (1− 1)m(Ω(c))

]
G(c)

= 0,

where the second to last equality holds because we apply the binomial theorem,

which states that
∑p

i=0

(
n
i

)
xi = (1 + x)p for any positive integer p and real number

x. This completes the proof.

Remark. Condition (iii) in Theorem 1 ensures that functionsGξ are smooth on (1,∞]l(ξ)

so that the Gξ-volumes are non-negative by the fundamental theorem of calculus. The

functions gξ may be regarded as densities on (1,∞]l(ξ) and can be calculated from the

function G so that Condition (iii) is easy to check from the function G. For example,

consider a function

G(z1, z2; ρ) =


∫ z2
−∞

∫ z1
−∞ φ(x1, x2; ρ)dx1dx2, if z1 ≥ 1 and z2 ≥ 1

0, otherwise

where φ(·, ·; ρ) is the density function of the centered bivariate normal with variances

one and covariance ρ ∈ [0, 1). Conditions (i) and (ii) hold clearly. It is also easy to show

that

g{1}(u; ρ) =

∫ 1

−∞
φ(x1, u; ρ)dx1 ≥ 0 and g{2}(u; ρ) =

∫ 1

−∞
φ(u, x2; ρ)dx2 ≥ 0.

Applying Theorem 1, we conclude that G(·, ·; ρ) is 2-increasing.
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Corollary 1. The function H(·) defined in (1) is indeed a distribution function.

Proof. As stated in the beginning of Section 3, H(·) satisfies Condition 1. To establish

that H(·) is n-increasing, we need to check conditions (ii) and (iii) of Theorem 1. Note

that the density of H on (1,∞]n is

h(z) = (1− ρ)

(
θ

1− ρ

)n [n−1∏
i=1

(i− (1− ρ))

][
n∏
i=1

z−1
i

(
Tiz
−θ
i

)( 1
1−ρ)

][
n∑
i=1

(
Tiz
−θ
i

)( 1
1−ρ)

](1−ρ−n)

,

which is non-negative. Moreover, simple calculation shows that for each nonempty ξ 6=
Nn,

hξ(x(ξ)) =
∂Hξ(x(ξ))

∂x(ξ)

= (1− ρ)

(
θ

1− ρ

)l(ξ) l(ξ)−1∏
i=1

(i− (1− ρ))


·

 ∏
i∈Nn\ξ

x−1
i

(
Tix

−θ
i

)( 1
1−ρ)

∑
i∈ξ

T
( 1
1−ρ)

i +
∑
i∈Nn\ξ

(
Tix

−θ
i

)( 1
1−ρ)

(1−ρ−l(ξ))

,

which is non-negative for all x(ξ) ∈ (1,∞]l(ξ).7 This completes the proof.

Appendix

The maximum is distributed Pareto.

Let Z ≡ max(Z1, ..., Zn). The distribution function of Z is

P(Z ≤ z) = H(z, . . . , z) =

1− T̃ z−θ if z ≥ T̃ 1/θ;

0 otherwise .

This shows Z is distributed Pareto with shape parameter θ and scale parameter T̃ 1/θ.

7By convention, we denote
∏0
i=1 ui = 1 for any sequence {ui} of real numbers.
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Conditional Probabilities

Let hj(z) be the marginal density of Zj . Then

Pr
(

arg max
i
Zi = j ∩max

i
Zi ≥ z

)
=

∫ ∞
z

Pr(Zi ≤ u,∀i 6= j|Zj = u)hj(u)du.

Noting that, for u > T̃ 1/θ,

Pr(Zi ≤ u,∀i 6= j|Zj = u)hj(u) =
∂ Pr (Z1 ≤ u, ..., Zj ≤ zj, ..., Zn ≤ u)

∂zj

∣∣∣∣
zj=u

=
T

1/(1−ρ)
j

T̃ 1/(1−ρ)
T̃ θu−θ−1,

it follows that, for z > T̃ 1/θ,

Pr
(

arg max
i
Zi = j ∩max

i
Zi ≥ z

)
=
T

1/(1−ρ)
j

T̃ 1/(1−ρ)
T̃ z−θ.

Marginal distributions.

For any nonempty proper subset ξ of Nn and z ∈ Rm(ξ)
, let z∗(ξ) be the vector in Rn

with i-th element equal to zi if i ∈ ξ and∞ otherwise. The lower-dimension marginal

corresponding to ξ is

H(z; ξ) = H(z∗(ξ)) =

1−
(∑

i∈ξ
(
Tiz
−θ
i

)1/(1−ρ)
)1−ρ

if zi ≥ T̃ 1/θ for all i ∈ ξ;

0 otherwise .

Pareto tails.

The distribution of Zi|Zi ≥ a is Pareto because

P(Zi ≥ z | Zi ≥ a) =
P(Zi ≥ z)

P(Zi ≥ a)
=
(z
a

)−θ
.

for z ≥ a > T̃ 1/θ.
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The role of ρ.

Fix a point z = (z1, . . . , zn) ∈ Rn
. If zi < T̃ 1/θ for some i, then Hρ(z) = 0 = minj Fj(zj)

because Fi(zi) = 0. Suppose zi ≥ T̃ 1/θ for all i. Without loss of generality, we assume

T1z
−θ
1 = maxj Tjz

−θ
j . It follows that as ρ→ 1,

Hρ(z) = 1− T1z
−θ
1

(
n∑
i=1

(
Tiz
−θ
i

T1z
−θ
1

)1/(1−ρ)
)1−ρ

→ 1− T1z
−θ
1

= min
j
{1− Tjz−θj }

= min
j
Fj(zj).

This shows that for any z, we have H(z)→ min{F1(z1), . . . , Fn(zn)} as ρ→ 1.

It also follows that for every pair (i, j), H(z; {i, j}) → 1 −max{Tiz−θi , Tjz
−θ
j } as ρ → 1.

This implies that all mass points (Zi, Zj) are on the line{
(zi, zj) : zi =

(
Tj
Ti

)− 1
θ

zj

}
,

and hence that Zi and Zj are perfectly correlated as ρ→ 1.

Stochastic dominance with respect to T .

Consider T ′i ≥ Ti for all i. It is clear that HT ′(z) = 0 ≤ HT (z) if zi <
(
T̃ ′
)1/θ

for some i.

Suppose zi ≥
(
T̃ ′
)1/θ

for all i. We have

(
n∑
i=1

(
Tiz
−θ
i

)1/(1−ρ)

)1−ρ

≤

(
n∑
i=1

(
T ′iz

−θ
i

)1/(1−ρ)

)1−ρ

and thus

HT ′(z) ≤ HT (z)

by definition of H(·).
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Stochastic dominance with respect to θ.

Consider θ′ ≥ θ. It is clear that Hθ(z) = 0 ≤ Hθ′(z) if zi < T̃ 1/θ for some i. Suppose

zi ≥ T̃ 1/θ for all i. We have(
n∑
i=1

(
Tiz
−θ′
i

)1/(1−ρ)
)1−ρ

≤

(
n∑
i=1

(
Tiz
−θ
i

)1/(1−ρ)

)1−ρ

and thus

Hθ(z) ≤ Hθ′(z)

by definition of H(·).
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